ラット胎生期ヒ素曝露による胎児脳発達への影響

瀬沼美華¹,森 千里²,小川哲郎³,桑形麻樹子⁴

Prenatal sodium arsenite affects early development of serotonergic neurons in the fetal rat brain

Mika SENUMA¹, Chisato MORI², Tetsuo OGAWA³, Makiko KUWAGATA⁴

This study assessed effects of sodium (meta) arsenite shortly after exposure on developing fetal rat brains. Pregnant rats were administered 50 mg/L arsenite in drinking water or 20 mg/kg arsenite orally using a gastric tube, on gestational days (GD) 9–15, and fetal brains were examined on GD16. Dams administered 20 mg/kg arsenite showed reductions in body weight gain and food consumption during treatment, but not with 50 mg/L arsenite. Arsenite did not induce excessive cell death or affect neural cell division in any region of the fetal neuroepithelium. Tyrosine hydroxylase immunohistochemistry revealed that no difference in the distribution of catecholaminergic neurons between fetuses of arsenite treated and control rats. However, reductions in serotonin positive cells in the fetal median and dorsal raphe nuclei were observed following maternal treatment with 20 mg/kg arsenite. These results suggest that arsenite-induced neurodevelopmental toxicity involves defects in the early development of the serotonin nervous system.

緒言

疫学調査や臨床報告から、一部の環境化学物質の 胎生期曝露によって子どもに脳発達障害が発症する ことが明らかにされている. ヒ素は国際がん研究機 関(International Agency for Research on Cancer; IARC)によってヒトに対する発がん性が認められ る物質に分類され¹⁾, 無機および有機態で自然界 に存在することから, 食品や飲料水への混入が問 題となっている環境汚染物質である. ヒ素を含む 地下水の飲用による健康被害は, アルゼンチン, バ ングラデシュ, チリ, 中国, インドなどで認められ²⁾, これらの地域における疫学調査から, 高濃度汚染 地域における児童の注意力および記憶力の低下, IQ低下が報告されている. これらの報告から, ヒ 素の妊娠期あるいは小児期の曝露によって子供に 脳発達障害を発現する可能性が懸念され始めた³⁾.

動物実験では、ラット成熟動物にヒ素を投与し

- 3 埼玉医科大学医学部生理学
- 4 病理学研究室

た結果,行動異常,脳内のモノアミン濃度の変化 等の神経毒性を示し⁴⁾,ラットの妊娠期から育成 期にヒ素を投与した実験では,出生児に学習行動 試験における訓練数やエラー数の増加といった発 達神経毒性(developmental neurotoxicity;DNT) が認められている⁵⁾.このように胎生期のヒ素曝 露は脳の発達に影響を及ぼす可能性が考えられる が,ヒ素の胎児脳への影響に関する報告はない.

本実験ではヒ素曝露直後の胎児脳をエンドポイ ントとして評価することにより,胎児脳に対する 直接的な影響を調べるとともに,ヒ素誘発性の DNT発現の可能性についても考察した.

材料および方法

すべての実験操作は「財団法人食品薬品安全センター秦野研究所動物実験に関する指針」に基づいて実施した.

1. 動物および飼育方法

動物は日本チャールス・リバー株式会社から購入したSprague Dawley [Crl:CD(SD)]系の雌雄 ラットを使用した. 妊娠動物を得るために雌雄動 物を1対1で終夜同居させ,翌朝, 膣垢内に精子

¹ 毒性学研究室

² 千葉大学大学院医学研究院環境生命医学

あるいは膣栓が認められた動物を交尾成立として、この交尾確認日を妊娠0日(胎齢0日)とした.

温度21~25℃,湿度40~75%,換気設定約15 回/時間,明暗サイクル12時間(点灯時間7:00~ 19:00)に制御された飼育室内で,ラット用プラス チック製繁殖ケージ(350w×400d×180h mm) に妊娠ラットを1匹ずつ収容し,床敷として紙 パルプ製チップ(ペパークリーン,日本エスエル シー)を適宜供給した.固型飼料(CE-2,日本ク レア)および給水瓶に充填した水道水(秦野市水道 局給水)を自由摂取させて飼育した.

2. 投与物質

2.1 投与物質および投与方法

投与には3価のヒ素である(メタ)亜ヒ酸ナト リウム(NaAsO₂, CAS No. 7784-46-5, 純度 \geq 90%, Sigma-Aldrich, St. Louis, MO)を用いた.

投与期間および解剖日については、既報⁶⁻⁸⁾ および神経発生過程を考慮し設定した.すなわ ち、ラットの胎齢16日の脳は主要な領域の原 基が形態学的に識別でき、神経上皮層では神経 幹細胞の増殖、細胞の移動および蓄積が評価可 能な時期であり、他の化学物質を用いてDNT 評価を行った実績があることから、妊娠9日か ら15日の7日間、20 mg/kgのヒ素を強制経口 投与(As 20 mg/kg投与群)あるいは50 mg/Lを 飲水投与(As 50 mg/L投与群)し、妊娠16日に 帝王切開にて胎児を得た.対照群には媒体であ る注射用水を同様に強制経口投与した.なお、 投与液量(5 mL/kg)は、投与開始日である妊娠 9日の体重を基に個体別に算出した.

強制経口投与用検体はヒ素を注射用水に溶解 させ,飲水投与用検体はヒ素を水道水に溶解さ せ給水瓶へ充填した.なお,いずれの投与検体 も用時調製した.

対照群は11匹, As 20 mg/kg投与群は12匹, As 50 mg/L投与群は6匹の母動物を用いた.

2.2 投与量の設定

本実験の投与量は、既報^{4,5,9)}および予備実験¹⁰⁾ の結果に基づいて設定した.成熟ラットに20 mg/kg のヒ素を15日間強制経口投与した実験では、 自発運動の低下および中脳のドーパミン(DA) 含量の増加がみられ⁴⁾、50 mg/Lのヒ素を妊 娠6日から生後42日に飲水投与した実験では、 電撃回避試験において長期記憶の低下が,水迷路試験において訓練数の増加がみられている⁵⁾. なお,ラットに30 mg/kgのヒ素を妊娠8日から10日のいずれかの時期に単回腹腔内投与した実験では,胎児に外脳,無眼等が報告されている⁹⁾.これらの既報を参考に予備実験を行った結果,50 mg/kg以上の投与量は母動物への最大耐量を凌駕する用量であることが推察された¹⁰⁾.

したがって,20 mg/kg(強制経口投与)ある いは50 mg/L(飲水投与)を本実験の投与量とし て設定した.

3. 検査方法

3.1 体重, 摂餌量および飲水量の測定

体重および摂餌量は妊娠9日(投与開始日)お よび妊娠16日(帝王切開日)に測定した.また, 妊娠0日から16日まで毎日,飲水量を算出した. 3.2 帝王切開および母動物の検査

妊娠16日(11:00 ± 1 h)に母動物をセボフル ラン(マイラン製薬,大阪)にて吸入麻酔し,深 麻酔下で放血により致死させた. 剖検後,着床 数および死亡児数を記録した. 胎児は4%パラ ホルムアルデヒド0.1 mol/Lリン酸緩衝液(4% paraformaldehyde;4% PFA)で2日間低温下 (約4 \mathbb{C})にて浸漬固定した. 胎児体重は固定後 に測定した.

3.3 L素含量測定

帝王切開時に母動物の肝臓(対照群およびAs 20 mg/kg投与群;各3匹),胎盤,胎児全体, 胎児脳(対照群およびAs 20 mg/kg投与群;各3 腹)を採取し,誘導結合プラズマ質量分析装置 (ICP-MS)により組織中のヒ素含量を測定した (定量下限;肝臓,胎盤,胎児では0.01 ppm, 胎児脳では0.02 ppm).測定の際,胎盤,胎 児および胎児脳においては,一腹をまとめて一 試料とした.なお,含量測定は日本食品分析セ ンターに依頼した.

3.4 免疫組織化学染色

固定した胎児から脳を摘出した後,10%ゼラ チン水溶液を用いて胎児脳を包埋し,4% PFA 液にて2日間低温下で浸漬固定した.その後, 0.01 mol/Lリン酸緩衝生理食塩液(0.01 mol/L PBS液)に移し,薄切時まで低温保管した.作 製したゼラチンブロックは,ビブラトームを用 いて40 µmの厚さで前頭断の連続切片を作製 し、0.01 mol/L PBS液に浸漬して冷蔵保存した. 原則として3本のバイアル瓶に得られたすべて の切片を回収した. なお, セロトニン(5-HT) 染色の画像解析に使用した標本は、すべての胎 児脳切片を1本のバイアル瓶に回収した. 薄切 切片は, Crecyl violet 染色(ニッスル染色) ある いは各種免疫組織染色を実施した. すなわち. TUNEL染色(*in situ* cell death detection kit, POD, Roche), リン酸化ヒストンH3染色(rabbit anti-phosphorylated-histone H3, Sigma-Aldrich), Tyrosine Hydroxylase(TH)染色(sheep) anti-tyrosine hydroxylase, Pel-Freez), 5-HT染 色(goat anti-serotonin, ImmunoStar)標本を作 製し、細胞死の発現、神経幹細胞の分裂能、モ ノアミン系神経核(カテコールアミン系神経核, 5-HT神経核)の発生について観察した.

免疫組織染色は浮遊法によりdiaminobenzidine (DAB,和光純薬工業)発色によるABC法を用 いて実施した.いずれの免疫染色の場合におい ても,内因性ペルオキシダーゼ活性を賦活化す るために3%過酸化水素、0.01 mol/L PBS液中 にて室温下で15分間インキュベーションを行っ た.0.01 mol/L PBS液にて洗浄後,0.5%正常 血清、0.3% TritonX-100含 PBS液中にて室温 下で60分間非特異性反応を抑制させ、一次抗体 を1日から2日間低温下(約4℃)で反応させた.

0.01 mol/L PBS 液にて洗浄後,ビオチン化二 次抗体を室温下で90分間反応させた.洗浄後, アビジンビオチン複合体を形成させた(室温60 分).0.01 mol/L PBS 液および0.05 mol/Lトリ ス塩酸緩衝液で洗浄後,氷上で0.03%過酸化水 素0.1% DAB 含50 mmol/Lトリス・リン酸緩衝 液中で反応させ抗原の可視化を行った.

染色後, 胎児脳の各領域[大脳皮質前頭部(脳 室帯, 中間帯, 皮質板および辺縁帯), 大脳皮 質中央部(脳室帯, 中間帯, 皮質板および辺縁 帯), 大脳皮質後部(脳室帯, 中間帯, 皮質板お よび辺縁帯), 線条体, 隔壁, 海馬, 扁桃体, 視床前部, 視床後部, 視床下部前部, 視床下部 後部, 中脳(乳頭体, 視蓋前域, 中脳被蓋, 黒 質緻密部および腹側被蓋領域, 前丘, 後丘, 中 心灰白質), 峡部, 小脳, 延髄] について観察した.

3.5 胎児脳の計測

胎齢16日の胎児脳標本を用いて,大脳の縦 径(A),横径(B)および大脳皮質の厚さ(C), 前脳と中脳との境界部の縦径(D),中脳の横径 (E)を計測した(結果3.1参照).

4. 画像解析

画像解析ソフト(Image J 1.45, NIH)を用い て,5-HT染色標本の画像解析を行った.中脳領 域での5-HTの分布領域を吻側から尾側にかけて 8領域に分け(結果3.5参照),各領域の陽性細胞 の面積を算出した.さらに,背側縫線核,正中縫 線核領域に分け,面積を算出した.

5. 統計解析方法

統計処理には統計ソフト(統計解析ソフトウェ アSAS[®])を用いた.帝王切開所見(胎児死亡数,胎 児死亡率,胎児体重,胎盤重量)は一腹単位に集計 し,その他の所見は得られた値を評価対象として 各群の平均値を求めた.対照群とヒ素投与群を比 較しStudentのt検定を実施した(有意水準5%).

結果

1. 母動物所見および曝露量

ヒ素曝露後の母動物および帝王切開所見を表1 に,投与期間中の飲水量を図1に示した.

7日間の投与の結果,母動物の体重で換算した ヒ素の総曝露量(平均値)は,As 20 mg/kg投与群 で44.3 mg/匹,As 50 mg/L投与群で8.8 mg/匹 であった.As 50 mg/L投与群はAs 20 mg/kg投 与群よりも曝露量が低い結果となったことから, 本実験における低用量群と位置付けられた.

As 50 mg/L投与群では, 投与翌日から飲水量 の低下がみられた. As 20 mg/kg投与群でも, 投 与翌日に飲水量の低下が観察されたが, 投与2日 目には回復傾向を示した.

As 20 mg/kg投与群, As 50 mg/L投与群とも に体重増加抑制がみられた. As 20 mg/kg投与群 では体重増加量および摂餌量の有意な低下がみら れたことから, As 50 mg/L投与群よりも毒性が 強く発現したと考えられた.

帝王切開の結果,胎児死亡率,胎児体重に群間 の顕著な差はみられなかった.

2. 母動物および胎児組織中のヒ素含量測定

As 20 mg/kg投与群では、母動物の肝臓、胎盤、

表1 ヒ	:素曝露(妊娠9日か)	ら15日)後の母動物所見	および妊娠16日の帝王切開所見
------	-------------	--------------	-----------------

Group	Con	trol	As 20 i	mg/kg	As 50 i	ng/L
Number of dams	1	1	1	2	6	
Amount of As exposure(mg/dam)	0		$44.3~\pm$	4.2	$8.8 \pm$	1.3
Body weight gain(g) GD9-16	$40.2 \pm$	8.8	$18.2 \pm$	14.9**	$29.5 \pm$	15.0
Food intake(g) GD9-16	$149.9 \pm$	36.8	$112.7 \ \pm$	30.1*	146.4 \pm	13.4
Water intake(g) GD9-16	$281.6~\pm$	55.3	$257.2 \pm$	52.6	$176.1 \pm$	26.3**
Implantations(total)	$16.0 \pm$	1.8(176)	$13.2 \pm$	4.4(158)	$13.5 \pm$	4.3(81)
Intrauterine deaths(total)	$0.9 \pm$	0.5(10)	$0.6 \pm$	1.0(7)	$0.5 \pm$	0.5(3)
Intrauterine mortality (%) ^a	$5.7 \pm$	3.2	$3.9 \pm$	6.6	$3.4 \pm$	3.7
Mean fetal body weight(g)	$0.4354 \pm$	0.0479	$0.4273 \pm$	0.0352	$0.4218 \pm$	0.0173

a Intrauterine mortality (%) = (Number of intrauterine deaths / Number of implantations) \times 100

値は平均値±標準偏差を示す.GDはGestational dayを示す.

* 対照群と比較した有意差(P<0.05)を示す.

** 対照群と比較した有意差(P<0.01)を示す.

図1 ヒ素曝露(妊娠9日から15日)における母動物の飲水量 # 対照群と比較した有意差(P < 0.05)を示す.

胎児全体, 胎児脳のいずれの組織でもヒ素が検出 され, 母動物の肝臓および胎盤では, ほぼ同じ濃 度で検出された. 胎盤と胎児のヒ素含有濃度を比 較すると胎盤よりも胎児の方が低濃度であったが, 胎児および胎児脳にもヒ素が検出された. また, 対照群でもごく微量のヒ素が検出された(表2).

3. 胎児脳の形態学的検討

ー腹から2~3匹の胎児を無作為に選出して, 脳の計測(3.1),細胞死(3.2),分裂能(3.3)の 評価を行った.

3.1 脳の計測

胎齢16日の脳の5領域(図2A~E)を計測し た結果,対照群とAs 20 mg/kg投与群の間に顕 著な差はみられず,ヒ素投与による影響は認め

表2 ヒ素曝露後の母動物および胎児組織中のヒ素含量

Group	Control	As 20 mg/kg		
Number of dams	3	3		
Liver	1.02 ± 0.27	35.25 ± 11.75 **		
Placenta	$3.26 ~\pm~ 0.71$	39.76 ± 9.07 **		
Fetuses	$0.13 ~\pm~ 0.05$	13.11 ± 2.84 **		
Brain (fetuses)	0.01 ± 0.00	1.43 ± 0.13 **		

値は平均値(μg/g tissue) ±標準偏差を示す.

胎盤, 胎児および胎児脳は腹単位で集計した.

**対照群と比較した有意差(P<0.01)を示す.

られなかった(表3).

3.2 細胞死

胎児脳のニッスル染色およびTUNEL染色像 を図3A~Cに、細胞死数を図4に示した.胎 齢16日の脳をニッスル染色し、図4に示した 各領域(27領域)での神経上皮層における死細 胞数を光学顕微鏡の400倍視野下で観察した. 観察の結果、脳の各領域で細胞死数が異なっ ていたが、対照群とヒ素投与群との間では顕 著な差はみられなかった.なお、細胞死像は TUNEL陽性を示し、アポトーシスであること を確認した(図3A~C).

3.3 リン酸化ヒストンH3陽性細胞

リン酸化ヒストンH3染色像を図3D~Fに

^{**, ##} 対照群と比較した有意差(P < 0.01)を示す.

図2 胎児脳の計測部位(胎齢16日)

A. 大脳の縦径, B. 大脳の横径, C. 大脳皮質の厚さ, D. 前脳と中脳との境界部の縦径, E. 中脳の横径

表3 ヒ素曝露後の胎児脳の計測(胎齢16日)

Group	Control	As 20 mg/kg
Number of fetuses	16	14
A: Longitudinal diameter of cerebrum(mm)	3.0 ± 0.1	3.1 ± 0.1
B: Lateral diameter of cerebrum (mm)	$4.0~\pm~0.1$	3.9 ± 0.1
C: Thickness of cerebral $cortex(\mu m)$	$220~\pm~34$	$221 ~\pm~ 23$
D: Longitudinal diameter of boundary area of fore- and mid-brain(mm)	3.4 ± 0.2	3.5 ± 0.2
E: Lateral diameter of midbrain(mm)	2.4 ± 0.1	2.3 ± 0.1

値は平均値 ±標準偏差を示す.対照群との有意差はみられなかった.

図3 ヒ素曝露後の胎児脳の大脳皮質前頭部

(胎齢16日, 上段はニッスル染色およびTUNEL染色,下段はリン酸化ヒストンH3染色) (A, D)対照群, (B, E)As 20 mg/kg投与群, (C, F)As 50 mg/L投与群 写真は枠領域の拡大像を示す. 矢印はTUNEL陽性細胞を示す.

示した.胎齢16日の脳をリン酸化ヒストンH3 染色し,図5に示した各領域(16領域)におけ る脳室帯の脳室に接している最も内側の層のリ ン酸化ヒストンH3陽性細胞,すなわち細胞分 裂中期にある細胞像を光学顕微鏡の400倍視 野下で観察した. 観察の結果, 脳の各領域で陽 性細胞数は異なっていたが, 対照群とヒ素投与 群との間では顕著な差はみられなかった.

3.4 カテコールアミン系神経の分布

胎齢16日の脳をTH染色し、中脳の腹側被

図5 ヒ素曝露後の胎児脳におけるリン酸化ヒストンH3陽性細胞数(胎齢16日)

図7 ヒ素曝露後の胎児脳における5-HT神経核の分布(胎齢16日,5-HT染色) (A, D)対照群,(B, E)As 20 mg/kg投与群,(C, F)As 50 mg/L投与群 写真は枠領域の拡大像を示す。

蓋野および黒質緻密部(図6A~C),投射先で ある線条体(図6D~F)におけるTH陽性細胞お よび神経線維の分布を観察した(対照群;14胎 児/6腹,As 20 mg/kg投与群;18胎児/6腹, As 50 mg/L投与群;12胎児/5腹).観察の結果, 神経核および投射先ともにカテコールアミン系 神経核の分布に対照群との顕著な差はみられな かった.

3.5 5-HT 神経核の分布

胎齢16日の脳(対照群;15胎児/8腹, As 20 mg/kg

投与群;13胎児/7腹)を5-HT染色し,中脳の 背側縫線核(図7A~C),正中縫線核(図7D~ F)領域における5-HT陽性細胞の分布を観察し た.その結果,As50 mg/L投与群では対照群 との顕著な差はみられなかった.As20 mg/kg 投与群では背側縫線核,正中縫線核は確認され たが,5-HT陽性細胞の分布に対照群との差異 (減少)が認められた.そのため,背側縫線核お よび正中縫線核における5-HT陽性細胞を数え た結果,対照群と比較してAs20 mg/kg投与群

Group	Control	As 20 mg/kg
Number of dams	8	7
Number of fetuses	15	13
Dorsal raphe(count/area)	218.0 ± 120.3	169.6 ± 49.7
Median raphe(count/area)	156.0 ± 70.0	115.0 ± 31.7
Total(count/area)	374.0 ± 136.5	$284.6 \pm 55.7 *$

表4 ヒ素曝露後の胎児脳における5-HT陽性細胞数(胎齢16日)

値は平均値±標準偏差を示す.

* 対照群と比較した有意差(P<0.05)を示す.

図8 5-HT神経核の分布領域(胎齢16日,正常胎児)

D. 8領域における正中縫線核の面積

の陽性細胞数は減少していた(表4).

As 20 mg/kg 投与群において,橋の5-HT 神経 核領域での分布を詳細に確認するために、5-HT 陽性細胞の面積を画像解析にて算出した(対照 群;16胎児/5腹, As 20 mg/kg投与群;14胎 児/6腹). 画像解析の結果, As 20 mg/kg投与群 では5-HT陽性細胞の総面積が有意に減少して いた(図9A). さらに、吻側から尾側へ8領域 (図8A~H)に分けて解析した結果, 5-HT神経 細胞の分布様式に差はない(吻側あるいは尾側 へ分布のピークが移動している訳ではない)が, 面積が全領域で対照群より減少し、CおよびF 領域では有意差がみられた(図9B).また、背 側縫線核(図9C)および正中縫線核(図9D)に 分けて5-HT陽性細胞の面積を解析した結果, 両神経核ともにAs 20 mg/kg投与群では対照群 よりも減少し,背側縫線核(CおよびF領域)で は有意差がみられた.

考察

本実験では、ヒ素をラットの妊娠9日から15 日の7日間,強制経口投与(20 mg/kg)または飲水 投与(50 mg/L)し、胎齢16日の脳への影響につ いて検討した.

As 20 mg/kg投与群では体重および摂餌量の減 少といった母動物毒性がみられたが, 胎児死亡率, 胎児体重, 胎児脳の大きさには影響はみられず, 5-HT神経系の発生に影響を及ぼす結果が得られ た. As 50 mg/L投与群では母動物に体重増加抑 制がみられたが, 胎児脳では細胞死の過剰発現, 神経幹細胞の分裂能, カテコールアミン系神経お よび5-HT神経核の分布に対照群との差はみられ なかったことから, As 20 mg/kg投与群よりも低 用量の曝露では胎児脳の発達に影響を及ぼさない と考えられた.

In vitro試験ではヒ素曝露により神経細胞に細胞死が誘発されることが報告されている¹¹⁻¹⁴⁾. また、ラット新生児の大脳の初代細胞培養ではヒ素曝露により細胞死の原因となる酸化ストレスが誘発され¹²⁾、成熟ラットへの20 mg/kg(28日間) または1 mg/kg(6か月間)の経口投与により発現した酸化ストレスが大脳および海馬の神経細胞数 を減少させた^{12,15)}と報告されている.これらの 報告は胎生期のヒ素曝露が胎児脳における細胞死 を誘発し,胎児脳における神経幹細胞の分裂能に 影響を及ぼす可能性があることを示唆している. このように胎児脳における細胞死の誘発はヒ素曝 露による初期反応であると考えられたが,本実験 の胎生期曝露では細胞死数は増加せず,胎児脳で の神経上皮細胞の増殖にも影響は認められなかっ た.この原因としては,*in vitro*,*in vivo*条件に よる用量,曝露期間,胎児発生時期,胎児脳にお ける抗酸化能の違いによるものと考えられた.

神経発生の初期に発生するモノアミン神経系の 発生異常は後期の神経発生へ影響を及ぼす可能性 があることから、胎生期の脳で化学物質の影響を 評価するためには大脳の神経上皮と同様にモノア ミン神経系の発生も重要なエンドポイントの一 つと考えられる^{7,16-18)}. SD系ラットに胎生15日 から4か月齢まで飲水投与した実験¹⁹⁾では、13 週および17週(投与終了後1か月)に自発運動の 亢進が観察され、これは線条体(DA投射先)での DA代謝回転の低下に起因した行動変化であると 考察している. DA神経の発生が盛んな胎生期に ヒ素を投与した本実験では、DA神経核および投 射先ともにTH陽性細胞の分布に顕著な差はみら れなかったことから、胎生期のヒ素曝露はDA神 経の初期発生には影響を及ぼさないと考えられ た. ヒ素投与による自発運動亢進の臨界期は胎生 15日以降であり、胎生期のヒ素曝露によるDA神 経系の機能障害が生後に発現する可能性も考えら れた. ただし、行動異常を誘発するためには胎生 期から生後にわたる長期のヒ素曝露が必要なのか もしれない.

本実験における胎生期のヒ素曝露により,胎 児脳の5-HT神経細胞が減少した.背側縫線核 の神経細胞は本実験のヒ素曝露時期に相当する 胎齢11日から15日に最後の細胞分裂をする²⁰⁾. 5-HTは神経伝達物質としての役割だけではな く,胎生期においてはニューロン新生,樹状突起 の伸長,シナプス形成,大脳皮質の形成に関与し, 胎生期の脳発達において重要な役割を果たしてい る²¹⁻²⁴⁾.すなわち,われわれの結果はヒ素曝露 による5-HT神経系機能障害が中枢神経系の発生 にも影響する可能性を示唆している.アルコール, バルプロ酸,チメロサール,有機水銀化合物を含 む他の化学物質により誘発されるDNTは,初期 の5-HT神経系の発生に影響を及ぼすことが報告 されている^{7,16-18)}.したがって,ヒ素により誘発 された5-HT神経系の初期発生における異常は, DNT発現に関連する重要な機序の一つであると 考えられた.

5-HT陽性細胞数の減少がみられたAs 20 mg/kg 投与群の母動物は,体重および摂餌量の減少を示 した.母動物の低栄養は神経発達障害をもたらす 胎生期ストレスを誘発する可能性がある^{25,26)}.母 動物の低栄養ラットモデルでは,生後に学習・記 憶障害や情動性(不安)の亢進,モノアミン量の変 化が観察されることも報告されている²⁷⁻²⁹⁾.し たがって,胎児脳における5-HT陽性細胞数の減 少は,ヒ素投与によるストレスに起因した変化で あることも否定できない³⁰⁾.しかし,われわれ は母動物にストレスを負荷した胎児脳における 5-HT陽性細胞の分布を確認し,本実験における 5-HT神経系の変化は母動物のストレスによるも のではないことを確認している¹⁰⁾.

ヒ素は胎盤を通じて未熟な血液脳関門から新生 児脳に移行するが³¹⁾,本実験結果では胎児脳の ヒ素含量は胎児に移行したうちの約10%であっ たことから,ヒ素は水銀³²⁾のように選択的に胎 児脳に蓄積しないと考えられた.

本実験により胎生期に20 mg/kgのヒ素を曝露 すると5-HT神経系の発生に影響を及ぼすことが 明らかとなった.また,生後に発現するヒ素誘発 性のDNTには5-HT神経系の異常が関与してい る可能性が示唆された.

文献

- International Agency for Research on Cancer (IPCS) Overall evaluations of carcinogenicity: an updating of IARC monographs volumes 1 to 42. Lyons, 1987; 100-106 (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Suppl. 7)
- Ng JC, Wang J, Shraim A: A global health problem caused by arsenic from natural sources. *Chemosphere* 2003; 52: 1353-1359
- Rice DC: Neurodevelopmental Toxicants. Encyclopedia of Environmental Health. 1st Edition, eBook (Edited in Nriagu J.), Elsevier

Science 2011; 79-86

- Rodríguez VM, Carrizales L, Jiménez-Capdeville ME, et al.: The effects of sodium arsenite exposure on behavioral parameters in the rat. *Brain Res Bull.* 2001; 55: 301-308
- Xi S, Sun W, Wang F, et al.: Transplacental and early life exposure to inorganic arsenic affected development and behavior in offspring rats. Arch Toxicol. 2009; 83: 549-556
- Ogawa T, Kuwagata M, Muneoka KT: Neuropathological examination of fetal rat brain in the 5-bromo-2'-deoxyuridine-induced neurodevelopmental disorder model. *Congenit Anom (Kyoto).* 2005; 45: 14-20
- Kuwagata M, Ogawa T, Shioda S, et al.: Observation of fetal brain in a rat valproateinduced autism model; a developmental neurotoxicity study. Int J Dev Neurosci. 2009; 27: 399-405
- Senuma M., Takashima H., Ohta R., et al.: The effect of phenytoin on early development of the fetal rat brain. *Congenit Anom(Kyoto)*. 2012; 5: A20 [abstract].
- Beaudoin AR: Teratogenicity of sodium arsenate in rats. *Teratology* 1974; 10: 153-157
- 10) Senuma M, Mori C, Ogawa T, et al.: Prenatal sodium arsenite affects early development of serotonergic neurons in the fetal rat brain. Int J Dev Neurosci 2014; 38: 204-212
- Aung KH, Kurihara R, Nakashima S, et al.: Inhibition of neurite outgrowth and alteration of cytoskeletal gene expression by sodium arsenite. *Neurotoxicology* 2013; 34: 226-235
- 12) Flora SJ, Bhatt K, Mehta A: Arsenic moiety in gallium arsenide is responsible for neuronal apoptosis and behavioral alterations in rats. *Toxicol Appl Pharmacol.* 2009; 240: 236-244
- 13) Keim A, Rössler OG, Rothhaar TL, et al.: Arsenite-induced apoptosis of human neuroblastoma cells requires p53 but occurs independently of c-Jun. *Neuroscience* 2012; 206: 25-38
- 14) Koike-Kuroda Y, Kakeyama M, Fujimaki H, et al.: Use of live imaging analysis for evaluation of cytotoxic chemicals that induce apoptotic cell death. *Toxicol In Vitro.* 2010; 24: 2012-2020
- 15) Yadav RS1, Shukla RK, Sankhwar ML, et al.: Neuroprotective effect of curcumin in arsenicinduced neurotoxicity in rats. *Neurotoxicology*

2010; **31**: 533-539

- 16) Dufour-Rainfray D, Vourc'h P, Le Guisquet AM, et al.: Behavior and serotonergic disorders in rats exposed prenatally to valproate: a model for autism. *Neurosci Lett.* 2010; **470**: 55-59
- 17) Ida-Eto M, Oyabu A, Ohkawara T, et al.: Embryonic exposure to thimerosal, an organomercury compound, causes abnormal early development of serotonergic neurons. *Neurosci Lett.* 2011; 505: 61-64
- 18) Zhou FC, Fang Y, Goodlett C: Peptidergic agonists of activity- dependent neurotrophic factor protect against prenatal alcohol- induced neural tube defects and serotonin neuron loss. *Alcohol Clin Exp Res.* 2008; **32**: 1361-1371
- Rodríguez VM, Carrizales L, Mendoza MS, et al.: Effects of sodium arsenite exposure on development and behavior in the rat. *Neurotoxicol Teratol.* 2002; 24: 743-750
- 20) Altman J, Bayer SA: Development of the brain stem in the rat. V. Thymidine-radiographic study of the time of origin of neurons in the midbrain tegmentum. J Comp Neurol. 1981; 198: 677-716
- 21) Alenina N, Kikic D, Todiras M, et al.: Growth retardation and altered autonomic control in mice lacking brain serotonin. *Proc Natl Acad Sci USA*. 2009; **106**: 10332-10337
- 22) Kriegebaum C, Song NN, Gutknecht L, et al.: Brain-specific conditional and time-specific inducible Tph2 knockout mice possess normal serotonergic gene expression in the absence of serotonin during adult life. *Neurochem Int.* 2010; 57: 512-517
- 23) Mazer C, Muneyyirci J, Taheny K, et al.: Serotonin depletion during synaptogenesis leads to decreased synaptic density and learning deficits in the adult rat: a possible model of neurodevelopmental disorders with cognitive deficits. *Brain Res.* 1997; **760**: 68-73

- 24) Vitalis T, Cases O, Passemard S, et al.: Embryonic depletion of serotonin affects cortical development. Eur J Neurosci. 2007; 26: 331-344
- 25) Cox BM, Alsawah F, McNeill PC, et al.: Neurochemical, hormonal, and behavioral effects of chronic unpredictable stress in the rat. *Behav Brain Res.* 2011; 220: 106-111
- 26) Wojciak RW: Alterations of selected iron management parameters and activity in foodrestricted female Wistar rats (animal anorexia models). *Eat Weight Disord*. 2014; 19: 61-68
- 27) Pallarés ME, Scacchi Bernasconi PA, Feleder C. et al.: Effects of prenatal stress on motor performance and anxiety behavior in Swiss mice. *Physiol Behav.* 2007; 92: 951-956
- 28) Zuena AR, Mairesse J, Casolini P, et al.: Prenatal restraint stress generates two distinct behavioral and neurochemical profiles in male and female rats. *PLOS One* 2008; **3**: e2170
- 29) van den Hove DL, Kenis G, Steinbusch HW, et al.: Maternal stress-induced reduction in birth weight as a marker for adult affective state. *Front Biosci(Elite Ed.)* 2010; **2**: 43-46
- 30) van den Hove DL, Jakob SB, Schraut KG, et al.: Differential Effects of Prenatal Stress in 5-Htt Deficient Mice: Towards Molecular Mechanisms of Gene × Environment Interactions. *PLOS One* 2011; 6: e22715
- 31) Jin Y, Xi S, Li X,, et al.: Arsenic speciation transported through the placenta from mother mice to their newborn pups. *Environ Res.* 2006; 101: 349-355
- 32) Sakamoto M, Kakita A, Wakabayashi K, et al.: Evaluation of changes in methylmercury accumulation in the developing rat brain and its effects: a study with consecutive and moderate dose exposure throughout gestation and lactation periods. *Brain Res.* 2002; **949**: 51-59